NCEP ensemble status and the development of TC forecasts

Yuejian Zhu

Environmental Modeling Center

Acknowledgements:
Bill Lapenta, Geoff DiMego, John Ward
Jun Du, Richard Wobus, Jiayi Peng, Vijay Tallapragada, Zhan Zhang,
George Vandenberghe and Tim Marchok

Highlight

- SREF implementation
- GEFS implementation
- High resolution GEFS experiments
- HWRF ensembles
- Next GFS implementation
- Others

SREF Implementation (October 27th 2009)

- Geoff DiMego, Jun Du and etc...

- Upgrade model versions
 - WRF-NMM from v2.0+ to v2.2+
 - WRF-ARW from v2.0+ to v2.2+
 - RSM from v2007 to v2009
- Increase horizontal resolution
 - WRF NMM from 40 km to 32 km
 - WRF ARW from 45 km to 35 km
 - RSM from 45 km to 30 km
- Adjust membership
 - Replace 2 Eta (BMJ-sat) members with 2 WRF-NMM members
 - Replace 2 Eta (KF-det) members with 2 WRF-ARW members
- Enhancement physics diversity of RSM: replace Zhao cloud scheme with Ferrier cloud scheme for 3 SAS members
- Enhance initial perturbation diversity: Replace regional bred perturbations with global ET perturbations for 10 WRF members

Smaller Mean errors of temperature and wind over entire atmosphere

VWND BIAS by pressure from 20090622 to 20090810 for all 84 HR forecasts valid 0000 GMT

84 hr T BIAS valid 0000 GMT (12 UTC cycle)

84 hr VWND BIAS valid 0000 GMT (12 UTC cycle)

T₂m bias

SFC T BIAS averaged by fcst hrs from 20090622 to 20090811

2009 Tropical Cyclone Tracks Storm: AL0309 (BILL)

Forecasts: Beginning 2009082006 for SRMN model Observed: Beginning 2009081400, every 12 hours

GEFS Implementation (February 23rd 2010)

- Use operational GFS (version 6.0???)
- Upgrade horizontal resolution from T126 to T190
 - 4 cycles per day, 20+1 members per cycle
 - Up to 384 hours (16 days)
- Use 8th order horizontal diffusion for all resolutions
 - Improved forecast skills and ensemble spread
- Introduce ESMF (Earth System Modeling Framework) for GEFS
 - Version 3.1.0rp2
 - Allows concurrent generation of all ensemble members
 - Needed for efficiency of stochastic perturbation scheme
- Add stochastic perturbation scheme to account for random model errors
 - Increased ensemble spread and forecast skill (reliability)
- Add new variables (28 more) to pgrba files
 - Based on user request
 - Supports NAEFS ensemble data exchange
 - From current 52 (variables) to future 80 (variables)

NH Anomaly Correlation for 500hPa Height

Period: August 1st – September 30th 2007

Summary of the important cases of Bill, Jimena, Rick and Ida

TS track errors (2009)

TPC's evaluation

Tropical Cyclones

- TC Track errors for the new ensemble mean are smaller compared to the operational ensemble mean at most lead times
 - Results varied from case to case
 - Evaluation based on a relatively small sample of cases (1 August-30 September 2008, and selected runs from Bill, Ida, Jimena and Rick in 2009)
- In some cases, the observed TC track now lies within the parallel ensemble envelope where it was outside the operational ensemble envelope
- With the increase in resolution, the vortex tracker is able to follow the TC in more ensemble members at longer time ranges.
- This will help to improve the availability of the ensemble mean, particularly at longer lead times
- The overall ensemble mean forecast skill and probabilistic forecast skill of the GEFS are improved

DEP Hurridane Foredast Proje

High resolution GEFS T574L64 setting up

- High resolution global ensembles (NCEP/GEFS)
 - T574L64 (~23km horizontal resolution)
 - Initial analysis
 - GSI T382L64 analysis
 - ETR (ensemble transform with rescaling)
 - Every 24 hours (T126L28 and T190L28: every 6 hours)
 - Cycling at T382L64 resolution
 - NCEP/CCS
 - No tuning for rescaling (using T126's tuning parameters)
 - Upgrade to T574L64
 - Integrations
 - At Texas Advanced Computing Center (TACC)
 - Use GFS model at T574L64 resolution
 - 5 members (include control)
 - Out to 168 hours
 - No stochastic perturbations
 - Experiments
 - Once per day for period of Sept. 1st 20th 2009
 - Output
 - Tracks for each members, ensemble mean

1000mb Wind for 24hr from 2009092000 ensemble mem3

Hurricane Fred (07L)

Fred (07L) was reduced to Tropical depression after 2009092100

24-hr 1000hPa winds forecast from 2009092000

Top 6 panels (left): GSI verify analysis with operational GEFS (T126 -90km)

Bottom 6 panels (left): GSI verify analysis with high resolution GEFS (T574 – 23km)

Results:

High resolution ensemble with high resolution initial perturbations recycling (at T382) could catch up a storm development very well

Plots from Jessie Ma

Track Forecast Error for 2009 AL/EP/WP Storms
GEFS aperational(AEMN):Parallel(OEMN):T574L64(GVMN)

Conclusions and Plans

- Overall: GEFS T190L28 package is excellent
 - It has been implemented (February 23rd 2010)
- T574L64 is not that good comparing to T190L28 (because)
 - No tuning for rescaling parameters
 - 24hr cycling instead of 6hr cycling
 - Without stochastic perturbations
 - 64 levels (against 28 levels)
 - Horizontal diffusion (already 8th order)
- Resolution is important
 - Higher is better if we have tuned system for
 - Don't know which resolution is good for ensemble for current GFS
- Membership is important
 - Large membership is good for probabilistic forecast (optimum: 40-50?)
 - Less contribute to ensemble mean
 - Multi-model ensembles (need to work on)
- Set up T574L64 by using new ensemble, new GFS (v8.0)
 - 6-hr cycling instead 24-hr cycling
 - Stochastic perturbations
 - Parameters tuned (may need tune again, costs??)

HWRF Ensemble Flow Chart for Each Member

Track Error -- Frequency of Superior Performance (%)

NEXT GFS implementation

- John Ward

- GFS upgrades (Planned for June 2010)
 - Resolution increase (27 km from 35 km)
 - Upgrade radiation to AER RRTM2
 - Revised Gravity Wave Drag and Mountain Blocking
 - Removal of negative water vapor with a positivedefinite tracer transport scheme (enhances impact of satellite radiance data)
 - Higher resolution hurricane relocation
 - Major upgrades to shallow convection, PBL, deep convection with overshooting cloud tops (minimizes grid point storms)

TC scores for 2008 hurricane season (NCEP GFS)

Background!!!

Summary of the important cases of Bill, Jimena, Rick and Ida

TS track errors (2009)

HWRF FY2010 Test Plan and Results

- Vijay Tallapragada and etc..

- Define new baseline (benchmark) based on 2009 operational HWRF (H050)
 - Include bug fixes for land surface temperature, radiation, advection of vertical velocity.
- Proposed upgrades for 2010 HWRF implementation
 - 1. Include changes to initialization (use of satellite data in 9km nest) (H051)
 - 2. Include new surface physics specification for Cd/Ch (H052)
 - 3. Gravity wave drag parameterization (H053)
- Evaluated each of the above individual upgrades against the benchmark configuration (H054)
- Combine (1), (2), (3) for final pre-implementation testing using current operational GFS as well as proposed upgrades to GFS (T574 + physics) (H56C)
- Comprehensive testing and evaluation plan designed and executed in close collaboration with NHC forecasters, and included about 315 Atlantic and 295 East Pac individual 5-day forecasts
- Test results positive for both the current operational GDAS/GFS and the planned T574 with upgraded physics, for both Atlantic and Eastern Pacific basins
- Results in the Atlantic and East Pacific suggest that NCEP can deliver an improved operational configuration of HWRF-POM in terms of track and intensity error/bias.
 - H56C (GFS Phase 2) generally has higher percent of superior performance for track and intensity forecasts for both Atlantic and East-Pac basins
- HWRF FY2010 test plan also included evaluating HWRF coupled to HYCOM in the Atlantic basin. Results from these experiments indicated loss of intensity forecast skill compared to H56C.

Average Track Errors (NM) Statistics Plots — FY2010 HWRF Expts. 2008-09 ATL

Average Intensity Errors (kt) Statistics Plots — FY2010 HWRF Expts. 2008—09 ATL

Average Track Errors (NM)

Statistics Plots - FY2010 HWRF Expts. 2008-09 EAST-PAC

Average Intensity Errors (kt)

Statistics Plots - FY2010 HWRF Expts. 2008-09 EAST-PAC

Track Errors — Frequency of Superior Performance (%)
Statistics Plots — FY2010 HWRF Expts. 2008—09 ATL

Track Errors — Frequency of Superior Performance (%)
Statistics Plots — FY2010 HWRF Expts. 2008—09 EAST—PAC

